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Abstract

Artificial neural networks can provide improved computational efficiency relative to existing

methods when an algorithmic description of functional relationships is either totally

unavailable or is complex in nature. For complex calculations, significant reductions in

elapsed computation time are possible. The primary goal of this project is to demonstrate

the applicability of artificial neural networks to composite material characterization. As a

test case, a neural network has been trained to accurately predict composite hygral,

thermal, and mechanical properties when provided with basic information concerning the

environment, constituent materials, and component ratios used in the creation of the

composite. A brief introduction on neural networks is provided along with a description

of the project itself.



Introduction

Artificial neural networks may take varied forms and are applicable to a wide variety of

problems. A number of applications were investigated by Berke and Hajela [Reference 1]

in structural optimization and a number of other applications were suggested including

computational material characterization problems. Applications pertaining to the

engineering problems can be found in reference 2. The modeling of the material

behavior for conventional isotropic materials using knowledge based artificial neural net

works is the subject of references 3 and 4. The present project investigates the ap-

plicability of neural networks to the analysis of composite materials. The ultimate goal

is to apply neural network simulation to composite material characterization problems

in which the computation times are unacceptably large. However, the immediate goal is

simply to demonstrate that neural networks are capable of performing the necessary

types of basic calculations.

For this purpose, the functional relationships defined by the micromechanics embedded

in the computer code, ICAN (Integrated Composites Analyzer) [5] have been partially

duplicated in a neural network. ICAN is an in-house developed computer code which

performs micromechanics, macromechanics, and laminate analysis of composite materials.

ICAN's inputs are constituent material properties, factors reflecting the fabrication

process, and the laminate configuration. A number of constituent material properties



are maintained in ICAN's dedicated resident database. ICAN outputs are the various ply

and composite properties, the composite/ply response to different types of loading, and

various composite stress analysis results

own calculations very efficiently and is

neural network. Its computations have

of the applicability of neural

composite mechanics.

with predictions for failure. ICAN performs its

not the best candidate for replacement by a

been simulated here primarily as a demonstration

networks to material characterization appropriate to

Fundamental Neural Network Concepts

Neural network simulations represent attempts to mirror biological methods of infor-

mation processing. The fundamental concept is that of a neuron, a biological cell which

receives electrical or chemical inputs from one or many sources and processes those

inputs to generate a unique output. The output may, in turn, be passed on to other

neurons. Figure 1 provides a simplified view of a neuron. It has been artificially

oriented so that all of its inputs enter at the right of the cell body, its unique output

mechanism emanates from the left, and its output is passed on to other neurons to the

left of the body. Real neurons are not always so predictably organized.

Probably, the most interesting fact about neurons is that they can change with experience

the way they respond to the inputs they receive. In other words, they can "adapt" or



"learn." Consequently, when presented the same inputs in the future, they may generate

an entirely different output response than the one they are currently generating.

Neurons can differ greatly in

method of adaptation. Some

ways than others. This

physical structure, in their ability to adapt, and in their

neurons do not adapt at all, and some adapt in different

report will deal with artificial neurons which adapt by changing

the degree to which they '_veigh" or count each of their inputs before summing them

together to determine their output. The biological neurons upon which they are based

adapt by chemically increasing or decreasing the "connection strength" to each of their

inputs. The connection strengths in the artificial neurons are frequently referred to as

'kveights". For further discussion on this subject reference [6] may be consulted.

The term "neural network" refers to a collection of neurons and the biological connec-

tion material and connection strengths between them. It is also frequently used to

describe a computer simulation of such a biological entity. Figure 2 shows an idealized

neural network where the artificial neurons are shown as circles, the connections as

straight lines, and the connection strengths (or weights) are calculated during the

learning process. During forward propagation of input data the sums of products of

input and weights from other neurons are presented to an "activation function" of the

neuron, usually the sigmoid function with asymptotes of zero and one at minus and plus

infinity respectively. The output of such a neuron is then between zero and one re-

quiring scaling of the output and preferably also the input vectors to values between



those two limits.

the user.

Most codes perform the scaling automatically making it transparent to

The different levels shown in figure 2 are referred to as "layers." The lower layer is

called the "input layer" and the upper one the "output layer." The layer in the middle is

called a "hidden layer." There can be several hidden layers in some applications. A

network with no hidden layer is referred to as a "flat" network and may not have enough

flexibility to capture the physical behavior with sufficient accuracy. Depending upon the

problem in hand a successful neural net may have one or more hidden layers. The

network shown in figure 2 might be described as a "3:2:4 feed forward" network, to

reflect its layer and connection structures. The sizes of the input and output layers are

clearly dictated by the nature of the problem. The number and size of the hidden layers

may be selected by the user. A hidden layer is frequently chosen to be as small as

possible (to minimize the total number of computations in the network) without being so

small that the ability of the network to "learn" and to "generalize" the desired behavior is

impaired. A good starting value for the number of nodes in hidden layer is an average of

the number of input and output variables.

This project deals with "trainable" neural nets. Such networks are mathematical entities

whose design is motivated, to some extent by biological processes, but which follow

strictly defined rules of behavior. The process by which a neural network's weights
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(connection strengths) are established is referred to as "training." In order to train an

artificial neural network, there must be a substantial quantity of data available. The data

is provided to the network in the form of training pairs, vectors of information consisting

of independent input values and their associated output results. For example, one

training pair for the Exclusive Or function, XOR, might be: (1,1,0) indicating that when

the two inputs "1" and "1" are provided, the correct result is "0." Clearly, the form of a

training pair may vary from one network to another, depending upon the number of

inputs and the number of outputs.

Training pairs are repeatedly presented to the network, and the network adapts its

weights using its adaptation formula. The adaptation formula is designed so that each

modification of the weights willmove the network to a state where it would be more

likely to generate the correct response to the current training pair when provided the

inputs of that training pair. The adaptation scheme used in this project is the most

common one, "delta error back propagation." In error back propagation, the

modifications of the weights are accomplished so as to perform a "steepest descent"

reduction of the sum of the squares of the differences between the generated outputs

and the desired outputs as indicated in the training pairs. The details of the adaptation

scheme will not be discussed here. It has been thoroughly described by Rumelhart,

Hinton, and Williams [7].
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The simulations reported here have been accomplished using NETS [reference 8],

version 2.0, a public domain back propagation package. Numerous implementations of

back propagation are commercially available.

Project Details

ICAN uses more than thirty constituent properties, fabrication process related variables

and environmental conditions as input to generate thirty-seven composite properties.

This project has introduced increasing numbers of variables using a three stage approach.

The first and second stages of the project have focused on the four input variables.

They are the fabrication process related variables and the environmental conditions. The

fabrication process related variables are the fiber volume ratio and the void volume ratio.

The environmental conditions considered are the use temperature, and the absorbed

moisture content by the composite. Three typical composite systems are chosen in the

study. They are the S-Glass/Epoxy, AS-Graphite/Low Modulus Low Strength Matrix, and

P-75 fiber/High Modulus High Strength Matrix composite systems. The constituent

properties for all the materials involved are resident in the dedicated databank of ICAN.

For the first stage, four different neural networks have been trained, each predicting the

composite properties with only one of the four variables being permitted to vary and all

other variables remaining fixed. In the second stage, the four variables have been
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permitted to

third stage.

change simultaneously. All input constituent properties have varied in the

The stage 1 simulations have served as a test situation in which the basic data

generation and training techniques of the project could be developed and tested.

Despite the fundamental simplicity of the results shown here, a major portion of the

project effort was expended on these tasks. The stage 1 input variables are the fiber

volume ratio, the void volume ratio, the use temperature and the moisture content. The

outputs are unidirectional composite ply properties. Four different networks, each

corresponding to a particular ICAN input variable, were trained in the first stage. In

anticipation of stage two, a 4:15:37 feed forward structure was utilized, even though only

one input variable was non-constant in the training of a given network. Table 1 sum-

marizes the results. For each of the four variables, training data, consisting of sixteen

ICAN runs was used to train the network. The trained network was then applied to

sixteen test cases, where the variable in question varied randomly within the range of

values used in the training cases. The ranges were chosen to include all reasonable

possibilities.



The neural network created for each variable predicts results in the test cases with an

RMS error below 1.2 percent. In fact, for all variables except the fiber volume ratio, the

RMS errors are well below 0.5 percent. Experiments with additional training data and

increased training time have not resulted in significant improvement over the results

shown in Table 1.

As mentioned earlier, Stage 2 of the project involved training a network which uses all

four of the preceding variables as input. Experiments in this stage involve a 4:15:37 feed

forward network. Training data consist of 625 ICAN test cases, where each of the four

variables takes on five evenly spaced values across an appropriate fixed range. The test

data consist of an equal number of ICAN data sets, where the four variables each have

values which are randomly selected from within their fixed range. The trained neural

network predicts the thirty-seven composite properties with an RMS error of ap-

proximately one percent.

In addition to the evenly spaced training data used in the second stage, some training

has been done with randomly selected data. The randomly selected training data
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produce essentially the same outcome as the evenly spaced data. The only observable

difference is that, when training to a one percent RMS error, the evenly spaced data

provide a slightly more difficult training standard but also produce slightly more accurate

results on the randomly selected test data. This probably results from the fact that the

output functions are, for the most part, monotonic in the variables and the evenly spaced

data always included the extreme values. Even when using the evenly spaced data, the

order of the pairs in the training set has been randomized. This technique is commonly

used to improve the speed at which a network learns.

All experiments described to this point have involved an intermediate modulus, high

strength matrix with glass fiber. To guarantee that the ability to train is not unique to

this material combination, additional stage two training has been accomplished with

other materials. Descriptions of the component constituents for the various composites

are shown in Table 2 with the RMS accuracy of their appropriate test data. The

networks for each composite have been exposed to their training sets 250 times. As the

table shows, no significant difference in predictive capability has been discovered in the

additional models. Because of the common training approach, this also suggests that the

relative levels of training difficulty are comparable.

Sample results from this study for S-Glass/Epoxy composite system are shown in Tables

3a and 3b. The results are the ply properties for a unidirectional ply. Table 3(a) gives a
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description of all the 37 composite ply properties with the appropriate units in which they

are defined. Three different arbitrarily chosen sets of fabrication variables (fiber volume

ratio and void volume ratio) and environmental conditions (the use temperature and the

moisture content) are fed through the trained net and the results are compared with

those predicted by ICAN. These are shown in Table 3(b). It can be concluded from

these results that with the exception of the longitudinal coefficient of thermal expansion

(No. 10), the trained net has captured the hygro-thermo-mechanieal behavior of the S-

Glass/Epoxy composite system. The maximum error in the coefficient of thermal

expansion (CTE) is about 10%. Similar trends are noticed in the predictions of proper-

ties for the other two composite systems as well. It appears that the vast differences in

the orders of magnitude between the CTE's and some of the other properties causes a

precision problem. This sort of difficulty may be overcome by artificially raising the

magnitudes of those properties so as to be able to car.ry more digits and avoid any

precision related problem. The difficulties induced by large differences in the order of

magnitude of the variables involved will be investigated in subsequent efforts.

As an additional exercise several Input/Output pairs of the 3-D composite properties for

a [_+10" ]_-Glass/Epoxy composite laminate have been generated and a net was trained to

approximately one percent accuracy. The results from this study are shown in the Table

4. Once again the neural net predicted values are in excellent agreement with ICAN

predictions.
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Stage 3 of the project has resulted in a neural network which predicts composite

properties when all ICAN constituent properties are permitted to vary. Variables

controlling the fabrication process (including the four variables studied in the first two

stages) have been maintained at fixed values. A 31:50:37 network structure has been

utilized to guarantee simplicity and adequate training flexibility for stage 3 simulations.

However, it is probably less efficient in both training time and computational accuracy

than a more sophisticated network with more hidden layers with less connectivity (fewer

nodes in each layer).

The network has been trained on 500 eases in which all constituent input properties

were randomly chosen over ranges to cover the set of reasonable values for the variables

in question. The 500 test cases have been similarly selected, The RMS error on the test

cases is 1.08 percent. Table 5 gives results for a typical stage three problem. The RMS

error on this particular problem is 1.2 percent, somewhat higher than the 1.08 percent

RMS error for the whole test set. Despite the generally acceptable RMS error level, the

trained net has failed to capture the physical behavior as is indicated by the large

percentage errors in several properties. The reasons for such poor performance are still

under investigation. One possible explanation is the sheer volume of the number of

input variables (31). This probably could be alleviated by choosing clusters of in-
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put/output variables that strongly interact and training them separately as opposed to a

single neural net. Another alternative is to choose n nets with m input variables to 1

output variable mapping instead of a single m input variables to n output variables

mapping.

t_omputational Efficiency

In the second stage, ICAN generates the 625 test sets using four minutes and forty-three

seconds of VAX CPU time while the neural network simulator requires one minute and

forty-three seconds. Although both programs perform extensive input and output, this

probably has little impact since the VAX utilizes memory mapped I/O. Based upon

these timings, the neural network performs its calculations roughly 2.5 times faster than

ICAN. Reducing the size of the hidden layer in the neural network to five nodes has

resulted in a network which performs its calculations about 3.2 times quicker than ICAN

when applied to difficult stage two problems. In stage three, with all constituent

properties varying, the neural network performs about 1.8 time faster than ICAN. This

improvement factor could probably be increased beyond 2.0 by decreasing the size of

the hidden layer and investing additional time in network training. Training costs,

however, have been significant for Stage 3 simulations. Approximately nineteen hours of

CRAY/XMP-4 super computer CPU time was consumed. This contrasts with a few
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minutes of DECNAX CPU time for training one of the single variable simulators in

stage one. The latter half of the training on the CRAY reduced the RMS error on the

test set by only one tenth of a percent, so ten hours of training time would probably have

been adequate. The training time is, of course, a function of the training algorithm,

which in this case was "plain vanilla" delta error back propagation. More advanced

training algorithms would greatly reduce the needed CPU time. After training is

completed, the calculation is relatively simple, and it takes place at a fixed rate for all

problems.

The principle computational advantages of the neural network implementation would

not be evidenced unless it were implemented on multiple parallel processors. Except for

the limited gains resulting from vectorization of DO-loops, comparable parallelism could

be obtained with ICAN only through a major restructuring of the source code, a process

conceivably involving months of effort. In fact, it is highly doubtful that comparable

parallelism could ever be accomplished with an algorithmic ICAN implementation.

However, one of the advantages of ICAN is that it can be integrated with a Finite

element code to which it supplies with needed element material properties. Even the

modest improvement in CPU times by a factor of two or three pays good dividends when

multiplied by the usually large number of finite elements in a model and by the iterations

through nonlinear simulation runs.
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Future Efforts

The results of this project do show enough promise to the hypothesis that neural

networks may be utilized to simulate the micromechanical behavior of composites

necessary to integrated composite structural analysis. Future efforts will be directed

toward clustering concepts at both input and output data for better training and predic-

tive capabilities as well as applying neural network simulations to composites analysis

problems where existing techniques do not provide results for their category of problems

as efficiently as ICAN does for its category. That investigation will also include

implementation and testing of a parallel processing scheme.
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Table 1 Single Variable Results.

RMS error results

Fiber Volume Ratio

Void Volume Ratio

Temperature

Moisture

1.175 %

0.181%

0.408 %

0.354 %

Table 2 Four Variable Results.

Constituents Description

S-Glass fiber with Epoxy Matrix

AS Graphite fiber with Low

Modulus, Low Strength Matrix

P-75 Fiber with High Modulus, High

Strength Matrix

l_b'tS error results

1.069%

0.975%

1.066%
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Table 3 (a) Description of Ply Properties.

DIIBSIRBIIiIIIIIIIISII|===IISIIIIIIIIISISIIISIDBRRIIII|BB|BBINII8

1. Elastic Moduli Enl

2. En2

3. En3

4. Shear Moduli Gn2

5. Gn3

6. Gn3

7. Poisson's Ratios vn2

8 • V123

9 • vn3
10. Therm. Exp. Coef. anl

1 1 • aln

12. a133

13. Density Pi

14. Heat Capacity Cl

15. Heat Conductivity Kn,

16. Kn2

17. Ki33

18. Strengths SinT

19. Sinc

20. Sin_

21 • Sine

22 • Sn2s

23. Moist. Diffusivity Dn,

24 • Dln

25. Dln

26. Moist. Expansion Bin

27 • Coefficient Bin

28 • 8133

29. Flexural Moduli Enlv

30. Einv

31. Flexural Strengths $23

32. Svn

33 • Sn2

34 • S.b

35. Ply Thickness tl

36. Interply Thickness 6c

37. Interfiber Spacing 6_

psi

psi

psi

psi

psi

psi

psi

psi

psi

ppm/°F

ppm/°F

ppm/°F
1b/in 3

BTU/lb

BTU-in/hr/ft2/°F

BTU-in/hr/ft2/°F

BTU-in/hr/ft2/°F

psi

psi

psi

psi

psi
in2/sec

in2/sec

in2/sec

in/in/l% moist.

in/in/l% moist.

infin/1% moist.

psi

psi

psi

psi

psi

psi
inches

inches

inches

I IIIIIII _ I II IIIII III IIIIIIIIIIIIIIII II _IIII_= _IIIII IIIII IIIIIII II
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Table 5. Typical Stage Three Results for a S-Glass/Epoxy Composite system. (fvr = 60)

No. Nets ICAN %Error

1: 7622223.500000 7640000.000000 0.232677
2= 1844958.125000 1948000.000000 5.289624
3= 1844958.125000 1948000.000000 5.289624

4= 700597.625000 731500.000000 4.224522
5= 430829.156250 439400.000000 1.950579

6= 700597.625000 731500.000000 4.224522
7= 0.253360 0.260000 2.553899
8= 0.364425 0.373500 2.429699
9= 0.253360 0.260000 2.553899
10: 0.000003 0.000004 10.137203
11: 0,000012 0.000013 4.303826
12: 0.000012 0.000013 4.303826
13: 0.073018 0,071600 1.980679
14: 0.258058 0.189700 36,034887
15: 11.080626 5.000000 121.612511

16: 3.836754 3.013000 27.339996

i7: 3.836754 3.013000 27.339996

18:229083.203125 221800.000000 3.283680

19:111144.492188 140000.000000 20.611077

20:18111.642578 8070.000000 124.431754

21:6862.871582 18830.000000 63.553523

22:8172.138672 8076.000000 1.190424

23: 0.000080 0.000080 0.000000

24: 0.000045 0.000045 0.177460

25: 0.000045 0.000045 0.177460

26: 0.000102 0.000105 2.205727

27: 0.001206 0.001209 0.253649

28: 0.001206 0.001209 0.253649

29:7622223.500000 7640000.000000 0.232677

30:1844958.125000 1948000.000000 5.289624

31:4842.767578 4851.000000 0.169706

32:191200.046875 214600.000000 10.903986

33:12713.559570 14120.000000 9.960626

34:12258.209961 12110.000000 1.223864

35: 0.005000 0.005000 0.000000

36: 0.000060 0.000052 15.882386

37: 0.000060 0.000052 15.882386
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F_ure 1.--Neurons.

Singlehiddenlayer

.2

Input layer

Figure 2._A simple neural network.

Output layer
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